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The problem which will be considered is as follows. An elastic semi-infinite rod having 
constant cross section F is glued (or welded) to the side of an elastic semi-infinite plate 

X 

&- 

F having thickness h (see Fig.l). At 
an arbitrary distance b from the 
end-face of the rod a unit force is 

applied in the direction of the rod 
axis. The contact shear stress ~~(5) 

and the normal stress cro(l) in an 
arbitrary cross section of the rod 

Fig. 1 are to be found, assuming that the 
rod is not subjected to any bending 

moments (normal contact stress is not taken into account). A similar problem for an 
infinite rod was solved in [1]. The case of a semi-infinite rod was considered in p, 33; 
in @] an approximate solution was given, while in [3] an exact solution was obtained 
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( * ) . However, these papers dealt only with the simple case when the force is applied 
to the rod end-face. 

We approach the problem iu a radically different manner and present the exact solu- 

tion for the case of a force applied at an arbitrary distance. The method is that suggested 

by one of the authors [4] for the solution of a similar problem of a force acting perpen- 
dicularly to the rod axis, with the shear contact stress completely neglected. The results 

of numerical computation of our exact solution are also given. 

1. It is easily shown that the determination of the shear contact stress Z&C) and dis- 
placement of the rod U,(z) along axis 5 is equivalent to solving the following system 
of equations : 

u. (3) = - -$- 1 *Ii&, To (4 ds + const (-,-x<<2<c@) (1.2) 

Uo’ (4 --_ - 3 [Zj ($)O_ lrqi (z - a)] (5 ,, 0, r = 2 I .&, fx = 12 (W-Y 

with subsequent fulfilment of the boundary condition 

U,l(O) = 0 (1.2) 

Here 6(r) is the Dirac impulse function, E and E, are the elasticity moduli of the 
materials used for the rod and plate, respectively, and the prime denotes the derivative. 

In the case. of a unit force applied to the rod end (b = 0) it is more convenient to 
satisfy the following condition: 00 

h 
s 

‘60 (5) dx = I (1.3) 

0 

In order to solve equations (1.1) let us first consider an ancillary system 

OD 

I&(+)=-& 
a 

iYo(hiz--1) Z&fS)dS (-CX <z<oo) 

U,” (t) - h”& (5) = - u [z, (x) - h-Q (5 - b)l (3 > 0) (1.4) 

Here K,,(z) is the Macdonald function. 
When Eqs. (1.4) are taken to the limit h -+ 0 , we obtain Eqs. (1.1) because it is 

known that x0 2 = Ofln z), z-b0 

That the first equation of (X.4) passes to the first equation of (1.1) when h + 0 is 

also made clear in.[5]. 
Thus, to solve system (1.1) it is sufficient to find ~~(5) from system (1.4), then take 

the result to the limit h -+ 0 and satisfy boundary condition (1.2). 

2. Assuming SL > 0, direct substitution shows that the general solution of differential 

equations (X.4), vanishing at infinity, is given by the following function : 

u, (5) = - c, e-hx + a ygA (x - s) [q, (s) -Ii-18 (s - h)] cl.9 (2.1) 
0 

Here C, is an arbitrary constant and 

*) An exact solution was also given by Kalandiia [ll] in a work published after the pre- 
sent paper was submitted to the Editor. 
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1 w s s *inx e-A 1x1 
-- g, (4 - 2s 

-- 
_qqd- 2x (2.2) 

Equating (2.1) to the first equation of (1.4) yields the Wiener-Hopf integral equation 
of the first kind o. 

c 
GA 

; 
lb@---8) zA(s)ds=r t++ -&e--t) (z>O) 

1, (5) = cg, (3) + n-XC) (hz) (c = U/T = hEa (2EF)-1) (2.3) 

which admits an exact solution. 

It is more convenient to find first the solution of the equation 
m 

s 
2, (2 -s) ‘PC (s) as = C?Q (z> 9, Im S> 9) (2.4) 

0 

and then, allowing for the linearity of Eq. (2.3), its solution is obtained in the following 

form [5, 6. 41: co 

TA (2) = s G, (- f) V< (2) d5 (2.5) 

where GA(u) is the Fourier transform of function gh(” - b). 
The solution of Eq. (2.4) is derived by means of Hopf-Fock formula [7, 5, 6, 41. 

q (4 = & 
. O” ‘u(a) ‘y(6) e_ixladw 

s m+f (2.6) 
-cu 

Here, function%’ (0) is regular and different from zero in the upper half-plane (exclud- 

ing point co) ; it satisfies the functional equation 

L-l(o) = Y(o)Y(- 0) 

and its behavior at infinity is 
Y(U) = O(o”) (0 + 30, v < i) 

Function t(o) is the Fourier transform of function Z&Z), the calculation of which results 
in the following formula : 

1 w=+?$,2 
-- 
L(o)--,+ +rw-qp=Q) 

Thus, function H(o) must be factorized. Removing from H(o) factor v/o” + ha which 
permits a self-evident factorization, we find in accordance with the general theory [7] 

(2.7) 
where 

Y (w) = ~x=z x)$ (w / A) 

As shown in [8] (cf. also [6. 4, 9]), the last integral can be reduced to the following 
form : 

XA (4 = x,, (2 ~0s z) = 

By means of deformation of the integration path (this operation is described in greater 

detail in [9. 61) into a loop embracing the ray (-ih,--iw) expression (2.6) can be writ- 

ten out as O” R,(s) (s2- h2) 

s Y (is) (s + i5) 
eeXS ds + H (5) eisx 

A 

(2.9) 
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R, (8) = vm/(c2+s2- h2) (2.10) 

Let us substitute expression (2.9) for Q(Z) into (2.5) and change the order of integra- 
tion in the iterated integral. Having done all this, let us perform the same operations, 

already carried out when deriving (2.9). on the integrals along infinite straight line. 

We have then instead of (2.5) m 

th (2) = A 
s 

R, (es) (cs + h) e-Cxs ds f T, @.) (2.11) 

XIC 
!I! (its) 

where 

ThfZ) =m 
O” R, (es) (c%Z - h2) 

03 
EZ 

s Y (its) 
J, (cs) e-CXS ds + 

cz 

s 
h/C -=^iC 

R, (cs) e-c(z-%s (2.12) 

m 

J, (cs) = 
c 

R, (cc) eecbT 

At, c y w (z + 8) 
dr, 

A = cc, y w 

Jv 
(2.13) 

If the force is applied to the end-face (b = 0), the second term on the right-hand side 
of Eq. (2.3) disappears and, consequently, similar terms in (2.5) and (2.11) disappear as 

well. Thus, in this case as well, the solution of system (1.4). allowing for (2.7), becomes 

zh (5) = A (2.14) 

3, As has been already said in the concluding sentence of Sect. 1, it is necessary to 

take to the limit h -, 0 all expressions (2.11)-(2.13) if the solution of system (X.1) is 
to be found. 

Let us first consider the case of a unit force applied to the end of the rod. In this case 

only formula (2.14) needs to be taken to the limit. 
Let us note that lim xr. (ics/&) = ~“2 (1 + s2)-“~ erp Ha (s) (3.1) 

h-M 

“, (-- I)* Ho(s)=~[aretgsIns- 2 $k+l 1 (2k+1)2 _ (0 < s < 1) 
k=l 

The fact is here taken into account that function x&(s) is the same as function x3(2; 1) 

defined by formulas (1.22) or (3.1) in [4], and that in [4] function x&s; h) is taken to 
the limit h -+ 0 and formula (3.1) is obtained in this manner. In the same paper (* ) a 
very important computational feature of function H,(S) is revealed, namely that 

N,(s) = H&i/S) (0 d a f i) (3.2) 

Allowing for (3.1) and (2.1 ), we obtain easily from (2.14) 

(3.3) 

which is the shear contact stress under the rod when the force is applied to the end of 

__ 

*) In this context let us draw attention to some misprints and errors in [4]. In formula 
(3.3) i in front of 00 should be removed ; in (3.4) it should be assumed that c = 1 and 
z f oa -, - n/,-- i_>~; in (3.6) the integration limits are as follows : in the first integral 

(- ~‘0 - i Y), a/6 - i In S) and in the third integral (0, - in/6 - Ins); in (3. 8j the fac- 
tor (i - i)-“’ is left out; everywhere it should he taken that (-- IS < Im (In z) < n). 
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the rod. 

With a view to deriving more convenient expressions both for shear contact stress 
z&z) and normal stress in the rod a,(s), we shall now introduce a dimensionless abscissa 
and normalized stresses z(E) and UK) 

E = cz, fi = cb; 2(C) = h(2c)-‘z&/c), a([) = h(2c)_‘a(Elc) 

Allowing for (3.4) and (3.2), we have 
I 

se- + -$ ds, 1 A’h 
z(E) = B B=2c’lt 

Do 1 o(E) = 2 S S c 
,-E 1s 

‘c (n)dn = 2B F (s) 8*+ sljl ds 

E 0 
1 

F (s) = (9 + I)-“, e-Hn(8) 

The arbitrary constant is found from condition (1.3) 

B 3 
[S 

l F (s) (1 + 9-y ds]-l = 0.157 

0 

Formulas (3.5) and (3.6) were used for the computation of ~(4) (Table 1, fl 
~(4) (Table 2, p = 0). The results were virtually the same as in [J, 31. 

= 0) and 

(3.41 

(3.5) 

(3.6) 

(3.7) 

4. Let us now consider a more general case, when a unit force is applied to an elastic 
rod at an arbitrary point z = b > 0. As has been already said, it is necessary to take 
formulas (2.11)-(2.13) to the limit to find Q(Z), and afterwards to find the arbitrary 
constant from boundary condition (1.2). 

Let us prove that this boundary condition will be satisfied if A = 0. To do this, it will 
be sufficient to show that the function 03 

irk’ (2) = 5 L?h (5 - a) f (s) I%3 
0 

which for f(z) = C&(Z) - h-l&z- b)] is a particular solution of the differential equa- 

tion in system (1.4), has the following property : 

Indeed, direct examination shows that 

(5<0) 

(4.1) 

The consequence of this is that 

K ~-h)uA*(x)]r=O=O dX 

In this manner, (4.1) is now proved. 
Thus zO(x) can be obtained if only formulas (2.12) and (2.13) are taken to the limit 

h-+0. Let us carry out on the integrals in (2.12) and (2.13) the same operations which 

were performed earlier when deriving (3.5) and (3.6). We have then 

1 -r (4) = 2nZ \ F (s) [s, (s) CT-~’ + J t+) $1 ds + r, (4 - p) 
0 
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1 

6 (4) = $ J (s) e-4s + J (s-1) 

t’/2 ,-6/t 

1 
dt 

t+z-1 

lo3 tewzt 
7, (z) = 2Jl c 

;, 

-dt = -& (- ciz co9 z - siz sin z) (z > 0) 
tz + 1 

(4.4) 

00 

S dt =f (ciz sin z - siz co9 z) (z > 0) 

0 

(4.5) 

where 

FunctionF(s) is determined by expression (3.7). 
When calculating the integrals in (4.4) and (4.5). use was made of formulas given in 

PO] (p. 3’26). These expressions determine normalized stresses in the case of an infinite 

rod loaded by a unif force at z = 0, and completely agree with formulas in TJ-] obtained 

by a different method. 
Using (4.2)-(4.5), the values of z(E) (Table 1) and o(E) (Table 2) were computed as 

functions of normalized distance@ = cb) between the point where the unit force is 
applied and the end of the rod. 

Table 1 

2.0 

- 

- 

- 

- 

- 

- 

1.4 0.4 0.6 1.0 4 = 0.2 

0.429 

0.23 
0.243 
0.155 
0.119 

6 

:.s: 
02 
0.6 
1.0 
2.4 

0.236 
0.289 

OS6 
0.138 
0.093 

0.157 
0.180 
0.249 

c) .?58 
0.094 

0.087 
0.095 
0.113 
0.147 

o.qp41 

0.056 
0.060 
0.068 
0.081 
0.138 

00 

0.033 
0.035 
0.038 
0.043 
0.060 
0.096 

Table 2 

1.4 2.0 

0.212 0.161 
0.220 0.165 
0.234 0.173 
0.254 0.184 
0.324 0.216 

-0.478” 0.270 

- 

I - 
0.0 0.564 
0.3 -0.347* 
0.4 -0.227 
(‘.6 -0.180 
3.0 -0.229 
I.< -0.100 

0.438 
0.474 

-0.404% 
-0.278 
-0.186 
--0.,141 

0.361 
0.384 
0.436 

-0.435* 
-0.244 
-0.178 

0.268 
0.280 
0.304 
0.341 

z,“: 8!47’ 

B 

These numerical values clearly indicate that for f3 > 1.4 the calculations may be 
carried out using formulas for an infinite rod. 

When Table 2 is used, it must be borne in mind that values with asterisks are valid 
for the cross section on the left-hand side of the point at which the unit force is applied. 
For the values valid for the cross section to the right of the force application point, unity 
must be added to the values in the Table. 



Contact problem for an elastic half-plane and a semi-infinite elastic rod 341 

BIBLIOGRAPHY 

1. Melan, E. _ Ein Beitrag zur Theorie geschwister Verbind~gen. Ingr. Archiv. 

Bd.3, H.2, S.123, 1932. 
2. BUell, E. L., On the distribution of plane stress in a semi-infinite plate with 

partially stiffened edge. J. Math, Phys. , Vol. 26, 1948. 
3. Koiter, W. T., On the diffusion of load from a stiffener into a sheet. Quart. J. 

Mech, and Appl. Math., Vol. 8, 1955. 
4. Popov, 6. Ia., Bending of a semi-infinite plate resting on a linearly deformable 

base. PMM Vol.25. No2, 1961. 
5. Popov, G. Ia., Impression of a semi-infinite die into an elastic half-space. 

Teoret. i prikl, matem. , L’vov, publ. L’vov. Univ., Npl. 

6, Popov. G. Ia., Bending of a semi-infinite plate on an elastic half-space. 

Nauchn. dokl. vyssh, sbkoly, Stroitel’stvo, N94, 1958. 

7. Krein, M. G., Differential equations on a straight half-line with a kernel depen- 

dent on the difference of arguments. Usp. matem. n., Vol. 13, Np5. 1958. 
8. Grinberg, G. A. and Fok, V. A., On the Theory of Coastal Refraction of 

Electromagnetic Waves. In the Collection : Studies of Radiowave Propa- 

gation, Coll.2, M.-L., Izd. Akad.Nauk SSSR, 1948. 

9.‘ Popov. G, Ia., On a certain intro-differential equation, Ukr. matem. zh., 

N?l, 1960. 
10, Gradshtein, I, S. and Ryzhik, I. M., Tables of Integrals, Sums, Series 

and Products. M, , Fizmatgiz, 1963. 

11. Ka landiia, A. I., Stress conditions in plates reinforced by stiffening ribs. 

PMM Vol.33, l’P3, 1969. 
Translated by J. M. S. 

A METHOD FOR THE CONSTRUCTION OF THE APPROXIMATE 

SOLUTION OF THE MIXED AXISYMMETRXC PROBLEM 

PMM Vol. 34, N%!, 1970. pp. 360-365 

V. S. PROTSENKO and V. L. RVACHEV 
(Khar‘kov) 

(Received July 11. 1969) 

In this work some general considerations are presented with respect to the cons~uction 

of an approximate solution to spatial mixed problems in the theory of elasticity. The 

axisymmetric problem is used as an example. 

For the solution a structure is proposed which permits to satisfy exactly mixed bound- 

ary conditions of a certain type. In addition, this structure contains a series of arbitrary 
functions the selection of which can be made such that the system of differential equa- 
tions for the eq~~brium of the elastic body is satisfied in the best possible manner (in 
one sense or another). 

The analyses are based on the utilization of R-functions n] which makes it possible 
to examine practically any real three-dimensional bodies. The question of the founda- 
tion of the method is not discussed. 


